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We reconstruct a kinematically admissible (volume-preserving) three-dimensional
velocity field corresponding to the stationary helical vortex (SHV) mode which is
observed in the Taylor–Couette–Poiseuille (TCP) system with a ratio of inner to outer
cylinder radii of 0.5 and a length to annulus gap ratio of 16, starting from experimental
data obtained via magnetic resonance imaging (MRI) for Re= 11.14 and Ta1/2 = 170
in water. The goal of the present work is to provide a complete kinematic representa-
tion of a strongly nonlinear duct flow that is of importance in the fields of mixing and
segregation, as well as in the study of the kinematic structure of three-dimensional
flows. By a judicious choice of a set of global basis functions that exploit the helical
symmetry of SHV, an analytical approximation of the streamfunction is obtained
despite the coarse MRI data and the non-uniform distribution of measurement error.
This approximation is given in terms of a truncated series of smooth functions that
converges weakly in L2, and the reconstruction method is directly applicable to three-
dimensional incompressible flows that possess a continuous volume-preserving sym-
metry. The SHV flow structure consists of a pair of asymmetric counter-rotating helical
cells in a double helix structure, foliated with invariant helically symmetric surfaces
containing fibre-like fluid particle orbits wrapped around the inner cylinder. Imposing
general topological constraints, juxtaposing SHV with neighbouring hydrodynamic
modes such as the propagating Taylor vortex flow and direct numerical simulation help
corroborate the validity of the reconstruction of the SHV flow field. The kinematically
admissible flow field obeys the Navier–Stokes equations with 10% accuracy, which is
consistent with experimental error, and has the same flow portrait as the numerically
computed flow. Global analysis of the SHV mode indicates that it corresponds to
a minimum in dissipation and mixing in comparison with a wide class of perturbed
neighbouring modes; hence it is a candidate for the study of particle segregation. To
our knowledge, the present study reports the first synthesis of a physically realizable
complex open flow that can be represented by an integrable Hamiltonian system
starting from point-wise experimental data and using solely kinematic constraints.

† Author to whom correspondence should be addressed: georgia@uiuc.edu
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1. Introduction
The study of geometric fluid mechanics forms a nexus between the broad field of

nonlinear analysis (Abraham, Marsden & Ratiu 1988) and the more specialized field
of chaotic mixing (Ottino 1989). There has been an increasing awareness of the role
that chaotic flows can play in the creation of order, in terms of persistent spatial
patterns (Rothstein, Henry & Gollub 1999) or segregation (Benczik, Toroczkai & Tel
2002) of a dispersed phase, rather than mixing or stirring of the flow. The majority
of the chaotic fluid mechanical systems used in the study of mixing or separation are
obtained by perturbing simpler flows, such as two-dimensional steady flows (e.g. Stokes
flows used by Jana, Metcalfe & Ottino 1994) or weakly nonlinear flows (Ashwin &
King 1997) based on the narrow-gap asymptotic approximation of Taylor–Couette
flows performed by Davey, DiPrima & Stuart (1968). Ashwin & King (1995) underline
the paucity of analytical representations of three-dimensional flows used to study
Lagrangian chaos. Owing to their complexity, such flows are very difficult to recon-
struct from numerical or experimental data. More importantly, as Ashwin & King
(1995) point out, there is a risk that flows that do not obey correct kinematics
might introduce spurious chaotic behaviour stemming from Lagrangian property
errors.

In this manuscript, we pursue the thesis that it is possible to construct an accurate
analytical representation of a certain class of steady three-dimensional flow fields by
imposing rigourous kinematic constraints on relatively coarse velocity measurements
obtained experimentally or numerically. Toward this end, we pursue the study of the
stationary helical vortex mode, a strongly nonlinear flow appearing in the Taylor–
Couette–Poiseuille system, for which experimental measurements of the velocity field
were obtained via magnetic resonance imaging, and a corroborating numerical valida-
tion became available. The velocity reconstruction methodology is related to the recent
work by Raguin (2004) and Raguin & Georgiadis (2004a), who developed a physics-
based dynamic imaging method that allows the extraction of general irrotational or
divergence-free velocity fields from sparse experimental data sets. Our goals here
extend beyond the high-resolution reconstruction of the SHV mode, which is a
rather specialized flow. We lay here the foundation for the analytical study of a
class of real three-dimensional two-phase flows, which promise rich fluid dynamics
involving chaotic mixing or segregation. Imposing correct kinematics (such as strict
mass conservation) during the reconstruction of the Eulerian velocity field contributes
to the accuracy with which critical Lagrangian properties of such flows can be
evaluated.

1.1. The Taylor–Couette–Poiseuille system

When a viscous fluid is placed in a closed annular cavity between a rotating inner
cylinder and a fixed coaxial outer cylinder, the base (Couette) flow becomes unstable
as soon as the rotation speed of the inner cylinder exceeds a critical value. This instabi-
lity gives rise to a hydrodynamic mode possessing an SO(2) × O(2) symmetry and
characterized by stationary axisymmetric counter-rotating vortices that fill the whole
annular region. These toroidal vortices are the result of an absolute instability and the
associated flow is commonly referred to as Taylor–Couette (TC) flow. When a through-
flow driven by a pressure gradient along the centreline is added, the TC flow loses the
O(2) symmetry (invariance to continuous translations in the axial direction) and the
resulting open system can now exhibit both convective and absolute instabilities.
The base flow consists of a superposition of circular Couette flow and annular
Poiseuille flow and is thus appropriately labelled Couette–Poiseuille (CP) flow. The
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axial through-flow suppresses the basic stationary instability, and as the axial pressure
gradient increases while the rotation speed of the inner cylinder is held fixed, the
first bifurcation gives rise to a travelling train of axisymmetric Taylor vortices,
commonly referred to as propagating Taylor vortices (PTV). Henceforth, the term
Taylor–Couette–Poiseuille (TCP) flow is used to refer to all hydrodynamic phenomena
pertaining to the open system described above.

The hydrodynamics of TCP flow is described by two dimensionless parameters,
the Taylor number Ta and the axial Reynolds number Re, which correspond to
the rotational speed of the inner cylinder and the imposed axial flow rate, res-
pectively:

Ta =
4η2

1 − η2

(
Ω

ν

)2

(R2 − R1)
4, Re =

(R2 − R1)U

ν
. (1.1a, b)

R1 and R2 are the inner and outer cylinder radii, Ω is the inner cylinder angular velo-
city, U denotes the mean axial velocity imposed by the through-flow, and ν is the fluid
kinematic viscosity. Two geometric dimensionless parameters complete the description
of TCP flow. They consist of the ratio of inner to outer cylinder radii, η =R1/R2, and
the ratio of the length L of the cylinders to the annulus gap, called the aspect ratio,
Γ = L/(R2 − R1).

At the limit Γ → ∞, the inlet and outlet regions of the flow do not affect the core of
the flow in closed systems. End effects can be neglected for TC systems with Γ > 10,
according to Snyder (1969). However, there is no such criterion for TCP systems, one
possible reason being that there is a strong influence of the imposed inlet axial velocity
profile and entrance conditions in TCP flow. Regarding the effect of the radii ratio η,
Coles (1965) determined, also for TC flow, that if η is greater than 0.714, a secondary
instability occurs at a sufficiently high rotation speed of the inner cylinder. The critical
value of η = 0.714 was derived analytically by Davey (1962). The new instability takes
the form of wavy Taylor vortices characterized by an oscillation pattern that is super-
posed on the Taylor vortices in the azimuthal direction. There have been no systematic
studies of secondary bifurcation in TCP flow, with the exception of studies concerning
relatively narrow gaps by Schwarz, Springett & Donnelly (1964), Bühler & Polifke
(1990), Lueptow, Docter & Min (1992), and Wereley & Lueptow (1999). The difficulties
with the TCP problem stem from the lack of analytical description of the PTV modes
and are compounded by the presence of both absolute and convective instabilities.
While absolutely unstable modes are insensitive to initial conditions and system
size, in the convectively unstable regime the growing flow patterns depend on initial
conditions and on the spatial distribution of perturbations (Büchel, Lücke & Schmitz
1996). Entrance conditions that shape the form of the perturbations entering the
system may excite one mode preferentially while inhibiting the growth of another,
and there is very little control of these perturbations in experiments.

1.2. The stationary helical vortex (SHV) mode of TCP

Among the secondary instabilities in the TCP system observed as the dynamic para-
meters Re and Ta are varied, the stationary helical vortex (SHV) mode has received
very little attention. The spatial structure of the simplest SHV mode consists of two
stationary counter-rotating helical vortices in a double helix structure, winding around
the inner cylinder and filling the whole annular cavity (azimuthal wavenumber equal
to unity). By fixing the speed of the inner cylinder rotation, the SHV mode appears as
a secondary flow bifurcation after the primary bifurcation from CP flow to PTV flow,



128 L. G. Raguin and J. G. Georgiadis

and is followed by another bifurcation to a disordered PTV mode. The term ‘bifurc-
ation’ here refers to the abrupt changes in the qualitative character of the solutions
of the Navier–Stokes equations (cf. Drazin & Reid 1981). The transition from CP flow
to PTV flow corresponds to a symmetry change from axisymmetry (SO(2) symmetry
about the centreline) and continuous translational invariance in the axial direction, to
periodicity in the axial direction (Z2), while keeping the azimuthal SO(2) symmetry.
The secondary bifurcation to the SHV mode yields a symmetry change from axisym-
metry to helical symmetry, and both modes need two independent coordinates to fully
describe them. These transitions around the SHV mode and this particular mode were
experimentally observed and reported by Lueptow et al. (1992) who proposed a map
of the flow regimes occurring in their relatively narrow-gap apparatus (η =0.848) using
visual and optical methods. Tsameret & Steinberg (1994) also described nonlinear
mode interactions consisting of temporal alternation of two or more flow patterns, and
mixed phases characterized by the superposition of two or more flow patterns near
the region of existence of the SHV mode for a wider-gap test section (η = 0.707 and
0.77). Finally, Moser, Raguin & Georgiadis (2001b) observed an additional nonlinear
mixed mode consisting of the juxtaposition of the SHV mode near the inlet and the
PTV mode near the outlet.

To our knowledge, the first experimental observation of the SHV mode was reported
by Bühler & Polifke (1990). The results of that study however contrast with all other
subsequent studies of TCP flow, and with the flow regimes map reported by Lueptow
et al. (1992) in particular. Bühler & Polifke (1990) observed a multitude of helical
vortex modes, with azimuthal wavenumbers as high as three, corresponding to six
helical vortices winding around the inner cylinder, either stationary or travelling in
the same direction as or opposite to the mean axial flow. The travelling helical modes
reported by Lueptow et al. (1992) propagate only in the same direction as the mean
flow and have helix angles of less than 5◦, which, given the geometry of their apparatus,
can only correspond to an azimuthal wavenumber equal to unity. The reason for these
apparently contradicting observations cannot be found in the difference in the geo-
metry of the experimental annular regions (the former had η =0.8 and Γ = 20, and
the latter η = 0.848 and Γ = 41), but rather in the flow entrance conditions. While
Lueptow et al. (1992), as well as most researchers studying the TCP system, used a
honeycomb section before the entrance to the annular region to straighten the incom-
ing axial flow, Bühler & Polifke (1990) introduced a flow swirl at the inlet. Since the
TCP system is open and thus sensitive to inlet boundary conditions, this modification
of the experiment is expected to have dramatic consequences for the evolution of
the nonlinear states in TCP flow. In other words, Bühler & Polifke (1990) may have
studied a modification of the TCP system, hence their results cannot be compared to
most of the other research on the subject.

The practical urge to explore the SHV mode is based on much greater experimental
capabilities than have previously been available. In an earlier magnetic resonance
imaging (MRI) study, Moser et al. (2000c) and Moser et al. (2001b) detected the
simplest SHV mode (azimuthal wave-number unity) and reported on its breakdown
and subsequent competition with the PTV mode. It was verified that the three-
dimensional velocity field of the pure SHV mode is time-independent and possesses
a helical symmetry with axial wavelength λ� 2(R2 − R1). The bulk helical symmetry
is broken near the inlet and outlet boundaries where the flow accommodates the
no-slip boundary condition via Ekman layers. The revealed continuous symmetry
makes the SHV regime quite attractive for both experimental and analytical studies.
Moreover, the presence of a stationary nonlinear mode, such as SHV, in regions of
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the bifurcation space surrounded by unsteady mode domains is of particular interest
and relevance in the study of mixing or separation processes using swirling flows
(cf. Ottino 1989; Ameer et al. 1999).

1.3. Outline

Starting from the experimental data of the SHV mode obtained via MRI velocimetry
by Moser et al. (2001b), the reconstruction process of the three-dimensional velocity
field and its analytical approximation will be discussed in the following section. A
systematic theoretical investigation of the kinematic properties of the approximated
SHV velocity field is given in § 3, including the relationship between the SHV mode and
the neighbouring PTV mode. The final section addresses the connection between the
global topological properties of the SHV mode, passive scalar transport, and mecha-
nical energy dissipation.

2. Methodology
2.1. MRI velocimetry

Magnetic resonance imaging is a tomographic imaging technique that makes it possi-
ble to image arbitrary cross-sections through the interior of rotating systems and
obtain information about the velocity profiles directly. Obtaining accurate full-field
velocity measurements in domains delineated by topologically complex solid surfaces
is impossible via optical methods, especially if these surfaces obstruct the field of view.
In the general case of rotating systems (mixers or turbines) and owing to the practical
limitations of attempts to fully compensate for light ray distortion or scattering, optical
methods can only image from planes not intersected by the rotating blades during the
image acquisition phase. Although great gains in the elimination of perspective effects
have been achieved with the use of multiple cameras, the flow between the blades or
on a meridional plane containing the axis of the rotor is practically inaccessible. The
state-of-the-art in stereoscopic optical imaging is represented by two examples: Hill,
Sharp & Adrian (2000) employed particle image velocimetry (PIV) to reconstruct
the turbulent flow outside the inter-blade domain of a Rushton turbine, and Bohl,
Koochesfahani & Olson (2001) used molecular tagging velocimetry to obtain three-
dimensional velocity measurements in the vicinity of a mixer propeller. Among non-
optical techniques allowing flow imaging through such essentially opaque systems,
only MRI has achieved a level of sophistication and spatial resolution that allows
quantitative visualization of the three-dimensional flow field in such systems. Owing
to rapid improvements in MRI scanner technology and our growing experience with
magnetically compatible test sections, flow-sectioning experiments such as the one
reported here can be performed on a more cost-effective basis than those requiring
optical techniques.

The advantages that MRI velocimetry offers in terms of non-invasiveness, choosing
the contrast mechanism and the field of view, are somewhat offset by a loss in
accuracy. While optical techniques such as laser Doppler velocimetry (LDV) and PIV
can provide an accuracy on the order of 1%, MRI velocimetry exhibits a modest 10%
accuracy in the case of phase-contrast techniques (cf. Moser et al. 2000b). Spin-tagging
methods are even less accurate unless they are coupled with an automated post-
processing tool, such as an optical flow code, which lowers the average error to less
than 10% for a simple annular Poiseuille flow (cf. Moser, Georgiadis & Buckius
2001a). This estimate of 10% accuracy was obtained by a point-wise comparison
with analytical or numerical solutions, and it represents a compromise between spatial
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Figure 1. MRI visualization of the SHV mode using the spin-tagging spin-echo sequence.
(a) Schematic of the TCP system; (b) transverse section of the SHV mode located at z = 75 mm
from the flow entrance; (c) meridional section of the SHV mode; (d) extra-axial section of the
SHV mode.

resolution and time constraints (cf. Moser et al. 2000b; Moser, Georgiadis & Buckius
2000a). In order to recover some of the accuracy in MRI velocimetry, we explore
the possibility of using physical (i.e. fluid mechanical) constraints to supplement the
post-processing step. In the present study, we propose a method to approximate the
velocity data with analytical functions that are solenoidal and satisfy the boundary
conditions exactly. A general model-based dynamic imaging method that strictly
enforces physical constraints has been developed by Raguin (2004) and Raguin &
Georgiadis (2004a), and enables the reconstruction of physically admissible velocity
fields from low-resolution velocimetry data.

While existing reconstruction procedures typically approximate experimental data
by satisfying smoothness and physical constraints (such as mass conservation) in a
‘weak’ form, Raguin (2004) and Raguin & Georgiadis (2004a) employ the physics of
the flow formally by projecting the data onto a set of functions that satisfy a set
of fluid mechanical constraints exactly. This set of decomposition functions can be
derived analytically for relatively simple flow domains (as is the case here), or obtained
numerically using images of the flow domain and computational fluid dynamics when
the boundaries are complex (cf. Raguin et al. 2004). An experimentally or numerically
determined velocity field V can be decomposed into a reference flow field profile V ref
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Figure 2. Reconstructed three-dimensional velocity field fluctuations (a) vr , (b) vθ , and (c) vz

in the (r, θ )-plane for SHV flow relative to the Couette–Poiseuille flow field. The inner cylinder
rotates in the clockwise direction, while the mean axial flow is in the direction coming out of
the page.

that accommodates the average properties of the velocity field, and an additional
velocity field v satisfying homogeneous boundary conditions. Exploiting the potential
spatial symmetries and stationarity of the flow, the velocity reconstruction problem can
be represented mathematically by a homogeneous problem. For instance, if a three-
dimensional volume-preserving velocity field consists of travelling waves or is station-
ary, and additionally possesses a continuous symmetry (e.g. translational invariance,
axisymmetry), a streamfunction can be defined in a two-dimensional reduced co-
ordinate system. In that case, a complete set of orthogonal basis functions (or at least
a representative set of approximation functions) in the reduced coordinate system
may be constructed, such that each approximation function satisfies all the kinematic
constraints (incompressible flow, no-slip boundary conditions). This set of approxima-
tion functions can then be used to construct an analytical approximation for v in
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terms of a series expansion. The series converges in L2, and is truncated according
to the convergence of a discrete least-squares error with respect to the point-wise
experimental or numerical velocity data and a volume-averaged viscous dissipation
function used to avoid spurious oscillations in the approximated velocity field. The
following consists of the specific application to the reconstruction of the SHV velocity
field, taking advantage of the helical symmetry and steadiness of the flow.

2.2. MRI reconstruction of SHV

By visualizing the displacement of grid patterns of (magnetically tagged) material lines
in transverse and meridional sections of the TCP flow with a fast MRI technique
developed by Moser et al. (2000c), the three-dimensional velocity field of the SHV
mode was first described qualitatively by Moser et al. (2001b) for Re =11.14 (U =
1.1695 mm s−1) and Ta1/2 = 170 (Ω = 15.5 r.p.m.). It is precisely this flow field that is
revisited here, but from a quantitative viewpoint. The experimental test section has
an annular region with R1 = 9.525 mm, R2 = 19.05 mm, L = 152.4 mm, which corres-
ponds to Γ =16 and η = 0.5. By convention, the z-axis is the common axis of the
inner and outer cylinders and is oriented in the direction of the externally imposed
through-flow, as shown in figure 1(a). The x- and y-velocity components (and sub-
sequently r- and θ-components in cylindrical coordinates) are estimated using the
displacement of the nodal points of Cartesian grids formed by material lines super-
imposed on five equidistant transverse slices, i.e. (x, y)-planes, roughly spanning one
wavelength λ in the middle of the test section, cf. Moser et al. (2001b) and figure 1(b).
The material grid resolution in the transverse sections is 13 by 13, and the image has a
square pixel resolution of 0.117 mm. The z-component of the velocity field is similarly
determined using the distortion of material grids encoded on meridional slices, i.e.
(r, z)-planes as shown in figure 1(c), where the image resolution is 0.195 mm in the
axial direction and 0.117 mm in the transverse direction. The axial wavelength, which
is the helical pitch of the SHV velocity field, is determined from the meridional slices
to be λ� 20 mm. This value is consistent with the transverse velocity field obtained
from the five available transverse slices, and it implies an overall helical symmetry in
the SHV flow field V as follows:

∀(θ0, z0), V (r, θ, z) = V
(
r, θ + 2π

z − z0

λ
, z0

)
= V

(
r, θ0, z + λ

θ − θ0

2π

)
. (2.1)

The helical symmetry of the transverse velocity components is verified within the
experimental error by rotating and comparing the velocity obtained on the five
transverse slices. In addition, such symmetry is consistent with data from additional
slices such as the extra-axial slice depicted in figure 1(d). The helical symmetry
relation (2.1) implies that the three-dimensional velocity field can be reconstructed
starting from the three independent velocity components in a single transverse slice
at an arbitrary axial location z. It is convenient to decompose the full velocity field
V = (Vr, Vθ , Vz) into the CP velocity field (0, V CP

θ , V CP
z) taken as a reference, and a

fluctuating field (vr, vθ , vz), as follows:

(Vr, Vθ , Vz) =
(
vr, V

CP
θ + vθ , V

CP
z + vz

)
(2.2)

where

V CP
θ (r) = Ar +

B

r
, V CP

z (r) =
U

E

[
r2

(R2 − R1)2
+ C ln

r

R2 − R1

+ D

]
, (2.3)
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and

A = − Ωη2

1 − η2
, B =

ΩR2
2η

2

1 − η2
, C =

1 + η

(1 − η) ln η
,

D = C ln(1 − η) − 1

(1 − η)2
, E = −1

2

[
1 +

2η

(1 − η)2
+ C

]
.




(2.4)

Figure 2 then shows the MRI measurements of (vr, vθ , vz) represented on the trans-
verse slice at z =0 corresponding to a section at a distance of 0.45L into the annulus.
The regions of maximum and minimum values of the radial velocity component vr

help locate the outflow and inflow regions separating the two counter-rotating helical
vortices (figure 2a), while the features of the axial component vz clearly indicate the
helical structure of the SHV mode (figure 2c). The conservation of the axial flow
rate is satisfied as the average of vz over a cross-section is found to be about 0.5%
of U , justifying the use of the Poiseuille profile as a reference velocity profile for
Vz. Regarding the radial velocity component, the mean flux through any cylinder of
radius r , i.e. the azimuthal average of Vr , should be zero, and thus, so should be the
mean of Vr over a cross-section. Since Vr is acquired on a Cartesian grid, only the
latter can be verified, and we find that the mean of Vr is 6% of U , which is satisfying
given the 10% to 20% experimental error. In the θ-direction, there is no extrinsic
conservation constraint, and we can merely report that the mean value of vθ is about
74% of U . This indicates that the fluctuation velocity vθ is not zero on average, and
thus the Couette profile in the θ-direction is clearly not the mean profile. At this
stage of the analysis, the Couette–Poiseuille profile is simply employed to handle the
heterogeneous boundary conditions, and no assumptions are made about the mean
values of the fluctuation field (vr, vθ , vz).

2.3. Analytical approximation of the SHV velocity field

Faced with very coarse measurements and large measurement error, an analytical
expression is sought to approximate the velocity fluctuations v =(vr, vθ , vz) over the
whole annular region. Specifically, we employ the discrete least-squares method to fit
the coefficients of a trial orthogonal function expansion, so that it satisfies certain
constraints and minimizes an error-measuring norm. Given the geometry of the
problem at hand, we seek to define the trial functions for each of the velocity com-
ponents in cylindrical coordinates. No trial functions for all three velocity components
could be readily found that inherently satisfy the continuity equation

1

r

∂

∂r
(rvr ) +

1

r

∂vθ

∂θ
+

∂vz

∂z
= 0, (2.5)

as well as the no-slip boundary conditions on the annular cavity walls

v(R1, θ, z) = v(R2, θ, z) = (0, 0, 0). (2.6)

A number of possibilities are available depending on which constraints are enforced
and which ones are relaxed. Ashwin & King (1995) enforced only approximately the
continuity equation and relaxed the no-slip boundary conditions in their investigation
of eccentric Taylor vortex flow. Using an asymptotic approximation for the velocity
field that does not preserve volume can affect the characterization of critical points,
especially elliptic points. Starting from the SHV measurements, we opt to construct a
global approximation for the velocity field that satisfies all the kinematic constraints
(symmetry, boundary conditions, and continuity equation), using the approach
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developed by Raguin (2004) and Raguin & Georgiadis (2004a) and applied specifically
to the SHV flow.

The starting point is to make full use of the helical symmetry of the SHV velocity
field. Differentiating the right-hand side of (2.1) with respect to z, and choosing z0 = 0
leads to

∂vi(r, θ, z)

∂z
=

2π

λ

∂vi(r, θ + 2πz/λ, 0)

∂θ
, i ∈ {r, θ, z}. (2.7)

By applying (2.7) for i = z, (2.5) can be rewritten as

1

r

∂

∂r
(rvr ) +

1

r

∂vθ

∂θ
+

2π

λ

∂vz

∂θ
= 0. (2.8)

Two alternative two-dimensional coordinate systems can then be introduced:

r, ϕ = θ +
2π

λ
z and r, ζ = z +

λ

2π
θ, (2.9a, b)

which allow the reduction of the three-dimensional Lagrangian system

dr

dt
= Vr (r, θ, z),

dθ

dt
=

1

r
Vθ (r, θ, z),

dz

dt
= Vz(r, θ, z). (2.10)

to the following equivalent two-dimensional systems:

dr

dt
= Vr (r, ϕ),

dϕ

dt
=

1

r

[
Vθ (r, ϕ) +

2πr

λ
Vz(r, ϕ)

]
≡ 1

r
Vϕ(r, ϕ), (2.11a, b)

dr

dt
= Vr (r, ζ ),

dζ

dt
= Vz(r, ζ ) +

λ

2πr
Vθ (r, ζ ) ≡ Vζ (r, ζ ). (2.12a, b)

Starting from relations (2.11)–(2.12) and the continuity equation ∇ · V =0 for the
three-dimensional velocity field V formulated in cylindrical coordinates, it is easy to
prove that the reduced two-dimensional velocity fields (Vr, Vϕ) and (Vr, Vζ ) satisfy the
continuity equation formulated in polar cylindrical coordinates

1

r

∂

∂r
(rVr ) +

1

r

∂Vϕ

∂ϕ
= 0, (2.13)

and axisymmetric cylindrical coordinates

1

r

∂

∂r
(rVr ) +

∂Vζ

∂ζ
= 0, (2.14)

respectively, using the following identities:

∂

∂θ
=

∂

∂ϕ
=

λ

2π

∂

∂ζ
=

λ

2π

∂

∂z
. (2.15)

Therefore, projecting the velocity field onto the (r, ϕ)-coordinate system is equivalent
to transforming the flow domain in a translation-invariant annular geometry and
considering a transverse section with ϕ as the azimuthal coordinate. Equivalently,
projecting onto the (r, ζ )-coordinate system corresponds to looking at an axisymmetric
annular geometry and considering a meridional plane with ζ as the axial coordinate. In
other words, given (2.9a, b), the (r, ϕ)-plane for r ∈ [R1, R2] and ϕ ∈ [0, 2π] corresponds
to a transverse cut at z = 0, with r ∈ [R1, R2] and θ ∈ [0, 2π], while the (r, ζ )-plane for
r ∈ [R1, R2] and ζ ∈ [0, λ] corresponds to a meridional cut at θ = 0, with r ∈ [R1, R2]
and z ∈ [0, λ]. The two reduced coordinate systems are equivalent as information can
be mapped from one to the other using ϕ = 2πζ/λ and Vϕ = 2πrVζ /λ. Let us use a
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general decomposition of the velocity field into a reference flow field V ref satisfying
the heterogeneous boundary conditions and the continuity equation, plus a fluctuating
field in the (r, ζ )-coordinate system:

Vr (r, ζ ) = vr (r, ζ ), Vζ (r, ζ ) = V ref
ζ (r) + vζ (r, ζ ), (2.16)

where

V ref
ζ (r) = V ref

z (r) +
λ

2πr
V ref

θ (r). (2.17)

This decomposition leads to the following two-dimensional homogeneous kinematics
problem satisfied by the velocity field (vr, vζ ):

1

r

∂

∂r
(rvr ) +

∂vζ

∂ζ
= 0 with (vr, vζ ) = (0, 0) at r = R1 and R2. (2.18)

Equations (2.14) and (2.18) imply that both two-dimensional velocity fields (Vr, Vζ )
and (vr, vζ ) are area-preserving; therefore we can introduce a streamfunction

Ψ (r, ζ ) = Ψ ref (r) + ψ(r, ζ ), (2.19)

such that

vr (r, ζ ) =
1

r

∂ψ(r, ζ )

∂ζ
, vζ (r, ζ ) = −1

r

∂ψ(r, ζ )

∂r
, (2.20a, b)

V ref
ζ (r) = −1

r

∂Ψ ref (r)

∂r
, Ψ ref (R2) = 0, (2.21a, b)

with (2.21b) corresponding to the no-slip condition on the fixed outer cylinder.
The velocity approximation is now recast as a streamfunction approximation

problem, albeit indirect, since only velocity measurements are available. We seek
trial functions for ψ(r, ζ ) that are separable in (r, ζ ), periodic in ζ with period λ, and
obey the homogeneous boundary conditionsy

∀ζ, ψ(R1, ζ ) = ψ(R2, ζ ) = 0. (2.22)

The candidate perturbation streamfunction may take the form

ψ(r, ζ ) =

N∑
i=1

M∑
k=0

[
Fi,k cos

(
2πk

λ
ζ

)
+ Gi,k sin

(
2πk

λ
ζ

)]
Ti(r̂), (2.23)

where N and M are the approximation orders in r and ζ , respectively, and k is
the wavenumber in the ζ -direction. {Ti(r̂), i ∈ [1, N ]} represents a set of orthogonal
functions whose dependence on the non-dimensional variable r̂ = r/R2 has yet to
be determined. {(Fi,k, Gi,k), i ∈ [1, N], k ∈ [0, M]} are the approximation coefficients
(Gi,0 ≡ 0, ∀i). The trigonometric functions are orthogonal in the interval ζ ∈ [0, λ],
and they form a complete set as M → ∞.

Combining (2.23) with (2.20) yields

vr (r, ζ ) =

N∑
i=1

M∑
k=1

[
−Fi,k sin

(
2πk

λ
ζ

)
+ Gi,k cos

(
2πk

λ
ζ

)]
2πk

λr
Ti(r̂), (2.24)

and

vζ (r, ζ ) =

N∑
i=1

M∑
k=0

[
−Fi,k cos

(
2πk

λ
ζ

)
− Gi,k sin

(
2πk

λ
ζ

)]
1

R2r
T ′

i (r̂), (2.25)

where T ′
i (r̂) is the derivative of Ti(r̂) with respect to r̂ .
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The no-slip boundary conditions (2.18) combined with (2.24) and (2.25) for (vr, vζ )
require that the functions Ti(r̂) satisfy

Ti(η) = Ti(1) = 0, T ′
i (η) = T ′

i (1) = 0. (2.26)

Therefore, the functions Ti(r̂) must satisfy a fourth-order differential equation with
four homogeneous boundary conditions. A family of orthogonal functions satisfying
the boundary conditions (2.26) for the same annular geometry was constructed up to
the third order by Chandrasekhar & Elbert (1958). These functions take the form

Ti(r̂) = J1(αi r̂) + aiY1(αir̂) + biI1(αi r̂) + ciK1(αir̂) (2.27)

where J1, Y1, I1, and K1 are the first-order Bessel functions of various kinds in Watson’s
(1944) notation, αi is the ith root of the characteristic equation∣∣∣∣∣∣∣∣

J1(αi) Y1(αi) I1(αi) K1(αi)

J1(αiη) Y1(αiη) I1(αiη) K1(αiη)

J0(αi) Y0(αi) I0(αi) −K0(αi)

J0(αiη) Y0(αiη) I0(αiη) −K0(αiη)

∣∣∣∣∣∣∣∣
= 0, (2.28)

which corresponds to the four boundary conditions (2.26), and (1, ai, bi, ci) is the
eigenvector associated with the zero eigenvalue of the matrix on the left-hand
side of (2.28). The functions Ti(r̂) have (i − 1) zeros in addition to their zeros on
the boundaries. By employing CERN Fortran libraries, the numerical values for
(αi, ai, bi, ci) are computed here for up to i = 5 with machine accuracy, so that the
four homogeneous boundary conditions (2.26) are satisfied with a maximum residual
of 10−7.

2.4. Choice of a reference flow field

The reference flow field is introduced so that the fluctuation flow field (vr, vζ ) has
homogeneous boundary conditions and a complete set of basis functions can be
obtained for the approximation of the fluctuation streamfunction ψ . By construction,
the use of the fluctuation streamfunction ψ (2.20) and its homogeneous boundary
conditions (2.22) forces the average of vζ over the flow domain (r, ζ ) to cancel out:∫ λ

ζ=0

∫ R2

r=R1

vζ (r, ζ )r dr dζ = −
∫ λ

ζ=0

∫ R2

r=R1

∂ψ(r, ζ )

∂r
dr dζ

= −
∫ λ

ζ=0

[ψ(R2, ζ ) − ψ(R1, ζ )] dζ = 0. (2.29)

As mentioned in § 2.2, the velocity measurements indicate that the flow domain average
of vz is zero but that of vθ is not. In (2.29), since vζ = vz + vθλ/2πr and the average of vz

is zero, the actual average that matters is that of vθ/r , which, from the data, has a non-
negligible value of about 20% of the mean value for V CP

θ /r . Therefore the reference
flow field cannot be constituted merely by the Couette–Poiseuille profile and needs
an additional term for the θ-component of the composite velocity Vζ . Furthermore,
this additional term should depend only on the radial coordinate, so that it does not
induce a undesired radial velocity component, thus inherently satisfying the continuity
equation.

An appropriate choice is given by

V ref
ζ (r) = V CP

z (r) +
λ

2πr

[
V CP

θ (r) + v̂θ (r)
]
, (2.30)
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where

v̂θ (r) =
1

λ

∫ λ

0

vθ (r, ζ ) dζ. (2.31)

Then, the reference streamfunction becomes

Ψ ref (r) = −
∫ r

R2

{
rV CP

z (r) +
λ

2π

[
V CP

θ (r) + v̂θ (r)
]}

dr. (2.32)

Since the measurements of (vr, vθ ) were not made on the same grid as those for vz,
the construction of the sample space for the composite velocity component vζ requires
the interpolation or approximation of the two components (vθ , vz) onto a common
grid. We choose to approximate vθ onto the vz-grid using a global approximation
function which satisfies the no-slip boundary conditions and allows a non-zero global
average (thanks to the terms for k = 0):

vθ (r, ζ ) = (r − R2)(r − R1)

N∑
i=−N

M∑
k=0

{
Oi,k cos

(
2πk

λ
ζ

)
+ Pi,k sin

(
2πk

λ
ζ

)}
ri . (2.33)

Using N = 2 and M = 2 provides an r.m.s. error below the measurement error. Our
choice of interpolating vθ onto the vz-grid then allows the computation of the addi-
tional term v̂θ (r) in the reference flow field using (2.31), which leads to

v̂θ (r) = (r − R2)(r − R1)

N∑
i=−N

{Oi,0r
i}. (2.34)

Equation (2.33) is then evaluated at the grid points where vz is available, v̂θ (r) is
calculated analytically, and a data set for the composite velocity vζ is constructed
using (2.12b) and (2.30).

2.5. Implementation of the discrete least-squares approximation method

The approximation of the measured radial velocity using (2.24) leaves the coefficients
{Fi,0, i ∈ [1, N]} of the streamfunction undetermined, while the approximation using
(2.25) fixes all the coefficients for the streamfunction. This raises the problem of
matching the coefficients shared in (2.24) and (2.25). Since the streamfunction is fully
determined by approximating vζ , we only use the results from approximating vζ and
then check the agreement between the radial velocity component derived from this
approximation and our measurements for Vr .

The final issue to be resolved for the reconstruction of the streamfunction in (2.23) is
the choice of approximation orders, N and M . While only eleven samples are available
in the r-direction, 22 velocity samples are available in the ζ -direction. This limits the
truncation levels to N � 5 and M � 10 in order to avoid aliasing artefacts. We choose
to set N = 5, but the limit M = 10 is unrealistic, since the data originating from the
transverse sections do not possess a comparable number of samples in the azimuthal
direction. A rational method to determine the truncation level M would generally
involve extrinsic constraints in addition to limiting the velocity truncation error to
levels below the measurement error. Such extrinsic constraints can be introduced
by considering the dynamics and constitutive equations of the fluid. For example, it
is feasible to measure the average mechanical power input and relate it directly to
the average viscous dissipation in SHV. Let Φ denote the local viscous dissipation
function of the full velocity field of a Newtonian fluid. By using (Vr, Vθ , Vz) expressed
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Figure 3. Plot for N = 5 of the r.m.s. of the difference between the approximated and measured
Vζ normalized by the maximum measured value for Vζ , and the volume-average dissipation
function Φ divided by the asymptotic value using Shank’s transform for both quantities, versus
the approximation order M in (2.23).

in the (r, ζ )-coordinate system and employing (2.15), Φ takes the form

Φ(r, ζ ) = 2

[(
∂Vr

∂r

)2

+

(
λ

2πr

∂Vθ

∂ζ
+

Vr

r

)2

+

(
∂Vz

∂ζ

)2 ]
+

(
∂Vr

∂ζ
+

∂Vz

∂r

)2

+

(
λ

2πr

∂Vz

∂ζ
+

∂Vθ

∂ζ

)2

+

(
λ

2πr

∂Vr

∂ζ
+

∂Vθ

∂r
− Vθ

r

)2

, (2.35)

where (Vr, Vθ ) are the approximated functions according to (2.24) and (2.33), and
Vz is extracted from (2.12b) using the approximated Vζ from (2.25) and Vθ . Then,
the integral of Φ over the flow field, which can be represented by the area integral
over the flow domain (r, ζ ) ∈ [R1, R2] × [0, λ], forms a metric, which can be employed
to determine the level of truncation M . Figure 3 shows the convergence of the
approximation error for N = 5 and M up to 3, in terms of two L2-norms: the r.m.s.
of the difference between the approximated and the measured Vζ , and the volume-
averaged viscous dissipation function, both normalized by their asymptotic value
obtained via Shank’s transform (17.8% and 19.6 cm3 s−2, respectively). For M =3,
both the r.m.s. norm and the dissipation norm are less than 1% different from their
respective asymptotic values.

The radial velocity component Vr extracted from the streamfunction is then found
to differ from the measurements of U by an r.m.s. value of 10%, which is consistent
with a general velocity measurement error of 10% for complex flow fields. Therefore,
we truncate our approximation scheme at N = 5 and M =3, which requires the deter-
mination of 35 coefficients for the approximation of the streamfunction Ψ . Although
the r.m.s. error between our approximation of Vζ and the measurements seems a
bit large, it can be explained in terms of the error accumulation resulting from
data coarseness and Cartesian to cylindrical coordinate conversions. Furthermore,
such discrepancies between measurement and approximation become inconsequential
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in view of the excellent agreement of the latter with the more accurate numerical
simulation of the SHV mode to be discussed in § 3.2.

An alternative reference flow field is provided by the mean velocity profile V (r),
which is defined in the cylindrical and reduced coordinate systems by

V (r) ≡ 1

2πλ

∫ λ

z=0

∫ 2π

θ=0

V (r, θ, z) dθ dz ≡ 1

λ

∫ λ

=0

V (r, ζ ) dζ. (2.36)

Since there is no net radial flux in or out of the control volume defined by the first
integral of (2.36), Vr (r) = 0 by definition. Furthermore, since the other velocity com-
ponents (Vθ and Vz in cylindrical coordinates or Vζ in the reduced coordinates)

only depend on r , V (r) inherently satisfies the continuity equation and the helical
symmetry (2.1). Also, the mean flow profile obeys de facto the boundary conditions,
and thus constitutes a valid candidate for the reference flow field. In general, V (r)
could be obtained either numerically or experimentally. In the present study, the
velocity components (Vz on a polar grid and Vθ on a Cartesian grid) were measured
with low resolution, which makes the computation of a mean profile for Vζ unreliable.
The choice of the approximation function for the velocity components given in (2.24)
and (2.25) compensates for the potential differences between the reference flow field
initially chosen by (2.30) and the alternative V (r).

In summary, the approximation of the three-dimensional velocity field in the SHV
mode is performed in three stages. First, the azimuthal velocity component is approxi-
mated using the functional form given in (2.33) that satisfies the boundary conditions
and allows a non-zero flow domain average. This makes it possible to calculate v̂θ (r)
via (2.34) and the reference flow field V ref

ζ via (2.30), thus enabling the construction of
a new sample space for vζ . Second, these sample values of vζ are approximated using
(2.25), from which is derived the analytical form of the streamfunction ψ by evaluating
the coefficients in (2.23). The radial velocity component Vr can then be computed using
(2.24) and validated against our measurements, and this completes the approximation
of the three-dimensional velocity field. Third, the two norms, the r.m.s. difference
with the data and the dissipative energy, are calculated as functions of the truncation
levels for the velocity approximations and checked for convergence. Ultimately, the
approximation produces an analytical velocity field that exactly satisfies the boundary
conditions and the continuity equation, exactly matches the experimental flow rate
measurement, and is consistent with our MRI measurements within the experimental
error (10%) of the velocimetry technique used here.

3. Flow topology of the SHV mode
In this section, we analyse the results from the numerical approximation of the

streamfunction of the SHV mode by constructing the streamline portrait of the flow.
We subsequently provide support for the proposed streamline portrait in three ways:
(i) by invoking topological constraints and structural stability criteria, (ii) by listing
corroborative experimental and numerical evidence, and finally, (iii) by comparing
the topology of the SHV mode and the most probable PTV mode.

3.1. Streamline portrait and flow topology

The determination of the streamfunction of the SHV mode allows the construction
of a streamline portrait of the flow, or flow skeleton (cf. MacKay 1994). This map
contains the critical points and the limiting fluid particle trajectories characterizing the
flow. The SHV flow skeleton is presented in the (r, ϕ)-plane (or transverse section) in
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z

(h)

(e1)

(p1)

(p2)

(PI)

(PII)

(CII)

(e2)

(CI)

Figure 4. Two-dimensional flow skeleton in SHV flow in the (r, ϕ)-plane. The arrows give the
direction of the fluid particle trajectories. (e), (h), and (p) denote elliptic, hyperbolic, and
parabolic points, respectively. (CI) and (CII) label the vortices rotating in the same and oppo-
site direction as the inner cylinder, respectively, while (PI) and (PII) mark the annular regions
containing fibre-like periodic orbits. The streamline through (h) is a separatrix. The three-
dimensional flow skeleton can be reconstructed by simultaneous translation along z and rota-
tion around z of this two-dimensional flow skeleton.

figure 4 and in the (r, ζ )-plane (or meridional section) in figure 5. These sections of the
three-dimensional streamfunction essentially correspond to transverse and meridional
cuts of the three-dimensional streamtubes, and are equivalent to the mapping of
three-dimensional trajectories of fluid particles into the reduced coordinate systems.
Mathematically speaking (Abraham et al. 1988, section 3.4), fluid trajectories are the
fibres of the flow domain, which constitute a local vector bundle. Figures 4 and 5 are
two projections of the vector bundle. Two recirculating cells are clearly delineated,
each with an elliptic point in its centre, corresponding to the two counter-rotating
helical vortices in the double helix topology. In the following discussion and in the
rest of the article, we shall use the following terminology to distinguish between the
two vortices. By considering the transverse section of the streamfunction presented
in figure 4, the rotation of the inner cylinder twists the fluid counter-clockwise, and
the vortex rotating in the same direction as the inner cylinder is labelled co-rotating,
while the other is called counter-rotating.

The counter-rotating cell is labelled (CI), enclosing the elliptic point (e1), while
the co-rotating cell is denoted (CII) and encloses the elliptic point (e2). The counter-
rotating vortex in (CI) is much larger than the co-rotating vortex in (CII) and this can
be explained by conservation of angular momentum in the fluid, as will be shown
in § 3.3. The (CI) cells form a cat’s eye pattern in the ζ -direction, with a hyperbolic
point (h) between repeating cells. The cell (CII) is bounded by two parabolic points,
denoted (p1) and (p2), on the outer cylinder wall. The two remaining flow regions
contain periodic orbits: (PI) is located near the inner cylinder, the other, (PII), lies
between the cells (CI) and (CII). Although it appears in figure 5 that the region (PI)
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( p1)
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Figure 5. Two-dimensional flow skeleton in SHV flow in the (r, ζ )-plane. The meaning of
arrows and all nomenclature is consistent with figure 4.

corresponds to a negative axial flow, it should be recalled that the view corresponds
to the reduced coordinates (r, ζ ). Therefore, a negative displacement in the ζ -direction
(
ζ < 0) does not necessarily correspond to a negative displacement in the z-direction,
as it originates from the combination of the displacement in the θ-direction 
θ and
in the z-direction 
z, such that 
z + λ
θ/2π < 0. In the present case, since the
inner cylinder rotation is in the negative θ-direction, a negative displacement in the
ζ -direction in (PI) is likely to result from a negative displacement in the θ-direction
overcoming the displacement in the z-direction, which appears more clearly in figure 4.
The representation of geometric objects in the reduced coordinates (r, ϕ) or (r, ζ ), as
opposed to the (r, z) or (r, θ) coordinates, is further clarified in the next paragraph by
relating the three-dimensional SHV structure to the two-dimensional cuts.

The three-dimensional flow structure of the SHV mode is shown in figure 6, where
a few iso-contours of the streamfunction representing streamtubes are plotted for
a flow domain spanning two axial wavelengths. Meridional and transverse sections
of the streamfunction are also represented in order to elucidate the topology of the
streamfunction. Figure 6(a) focuses on the two counter-rotating helical vortices, while
figure 6(b) shows the three-dimensional structure of the cat’s eye pattern that encloses
the cell (CI). Since the flow is steady, the streamlines and fluid particle trajectories are
identical. Let us consider a particle trajectory on one of the streamtubes shown in
figure 6(a). The trajectory projected onto the (r, ϕ)-plane corresponds to mapping the
three-dimensional trajectory along the streamtube to the top (or bottom) transverse
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(a) (b)

Figure 6. Three-dimensional plots of the approximated streamfunction Ψ in SHV flow for
two axial wavelengths. (a) The two counter-rotating helical vortices are outlined using three-
dimensional contour plots for two values of Ψ , while meridional and transverse sections show
the spatial structure of the flow. (b) The cell (CI) is enclosed in the two-dimensional cat’s eye
manifold, and one two-dimensional manifold of periodic orbits corresponding to the counter-
rotating vortex.

plane in figure 6(a). Similarly, the trajectory projected onto the (r, ζ )-plane corresponds
to mapping the three-dimensional trajectory along the streamtube to one of the two
meridional planes in figure 6(a).

It is useful to recast the description of the SHV streamline portrait in terms of
dynamical systems nomenclature. By comparing the three-dimensional plot in figure 6
with the projections depicted in figures 4 and 5, it becomes clear that the boundary of
cell (CII) is a two-dimensional manifold heteroclinic to two invariant one-dimensional
manifolds passing through points (p1) and (p2). The two one-dimensional manifolds
form two helices on the outer cylinder surface. Similar topology characterizes the
boundary of cell (CI) depicted in figure 6(b), which is a two-dimensional manifold
homoclinic to the one-dimensional manifold (also a helix) passing through point (h).

3.2. Corroborative evidence for the proposed SHV streamline portrait

Based on global geometric constraints, we can show that the streamline portrait in
figure 6 obtained from our analytical data approximation for the SHV mode is
‘realistic’. The simplest topology constraint is based on the Euler number ξ of the flow.
As explained by Jana et al. (1994), the Euler number of a surface is defined as the
sum of the Poincaré indices of the critical points on the surface (Abraham et al. 1988).
The Poincaré index of a hyperbolic point is −1, of a parabolic point is − 1

2
, and of

an elliptic point is 1. The annular geometry of the TCP system is imbedded in a
one-fold torus (genus γ = 1), and since ξ = 2 − 2γ , the Euler number ξ is 0. Therefore
the topological invariance relation for TCP is

NE −
(
NH + 1

2
NP

)
= ξ = 0, (3.1)

where NE is the number of elliptic points, NH is the number of hyperbolic points,
and NP is the number of parabolic points. Relation (3.1) in itself does not guarantee
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Figure 7. Comparison of SHV flow streamlines in the (r, ζ )-plane obtained via the MRI
reconstruction (solid contours) with numerical simulation results (dashed lines).

the existence of a flow but it is merely a way to check for topological consistency.
Quite obviously, the SHV streamline portrait proposed in figure 5 satisfies (3.1) with
NE = 2, NH = 1, and NP = 2.

We can also validate the approximated SHV velocity field by pursuing the idea that
the kinematics of a physically realizable flow (like the SHV mode) is related to its
stability. Rather than referring to the stability of the ‘ideal’ SHV flow to infinitesimal
perturbations to the flow, we focus on the structural stability of the SHV mode to
infinitesimal changes to the geometry and boundary conditions in the TCP system. A
structurally stable system is defined as a system that does not change in the qualitative
character of its solutions under infinitesimal changes in the governing equations, which
includes geometrical and physical parameters of the cavity, fluid properties, and
boundary conditions (Drazin & Reid 1981). It is easy to understand the motivation
behind the removal of ideal conditions because end effects and forcing inhomogenei-
ties are inherently present in a typical TCP apparatus. The SHV flow depicted in
figures 4–6 is structurally stable according to theorem (3.2) of Ma & Wang (2001).
Indeed, their conditions for the structural stability of divergence-free vector fields that
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satisfy Dirichlet boundary conditions (no slip at the walls) are met: (i) the approxi-
mated velocity field is sufficiently regular, (ii) the hyperbolic points are self-connected
(as shown in figure 4, (h) is connected to itself), and (iii) a parabolic point on the
boundary is connected to another parabolic point on the same boundary ((p1) is
connected to (p2), and both are located on the outer cylinder). Basically, by verifying
that the flow structure is structurally stable, we are further corroborating the fidelity
of the reconstruction of the SHV velocity field from the coarse MRI measurements.

More direct evidence for the validity of the streamline portrait depicted in figure 6
can be gleaned from experimental observations of the SHV mode using flake visua-
lization (cf. Lueptow et al. 1992). Indeed, the two parabolic points located on the
outer cylinder in figure 5 are connected with stable and unstable manifolds, which
correspond to inflow and outflow regions separating the counter-rotating cells that
become visible as lines limiting the two vortices when the flow is observed through the
outer cylinder. Moreover, the presence of the annular region (PII) delineated in figure 5
is corroborated by dye injection experiments conducted by the present authors in the
same apparatus used in the MRI study reported here (cf. Raguin, Shannon &
Georgiadis 2001).

Finally, the strongest support for the SHV mode, as reconstructed here, was obtained
by the authors’ research group using direct numerical simulation. Starting with the
reconstructed SHV field as an initial guess, the ‘ideal’ SHV solution (which satisfies
the Navier–Stokes equations) was obtained numerically using a three-dimensional
Lattice–Boltzman code with periodic conditions over the span of one axial wavelength
fixed at the measured value of λ= 20 mm (Holdych 2003). A steady SHV mode was
obtained for Re= 11.14 and Ta1/2 = 170 using a uniform Cartesian grid with spatial
resolution 0.1667 mm, which corresponds to λ/120. The numerical solution converges
to a steady flow field which exhibits a helical symmetry, satisfying (2.1) for each
velocity component (Vr, Vθ , Vz) with an r.m.s. error of 0.080%, 0.022%, and 0.071%,
respectively (the r.m.s. values are normalized by the maximum value for each
velocity component). The satisfaction of both the continuity equation and the helical
symmetry relation similarly allows the computation of a streamfunction in the reduced
coodinates (r, ζ ). As figure 7 demonstrates, the experimentally approximated velocity
field and the numerically determined velocity field agree in terms of all important flow
skeleton aspects. In fact, the numerical solution obtained in the vicinity of the (Re,
Ta) parameters, for which the SHV mode was reconstructed here, exhibits the same
streamline portrait characteristics: two counter-rotating vortices, the larger one in a
cat’s eye pattern and the other enclosed in a cell bounded to the outer cylinder wall.
Most importantly, the two flow fields differ by an r.m.s. error of less than 10.5%, 10%,
and 11% in the radial, azimuthal, and axial velocity components, respectively, and
by 7% in the streamfunction, all of which are consistent with the 10% experimental
error.

3.3. The SHV flow structure in relation to the PTV mode(s)

As mentioned in § 1.2, the PTV mode constitutes the neighbouring state of the SHV
mode; therefore, it is instructive to compare their topologies. Simplistically, the flow
structure of the PTV mode can be described by translating the axisymmetric TC flow
structure shown in figure 8(a) along the z-axis with constant speed (see e.g. Bühler &
Polifke 1990). However, since the heteroclinic orbit connecting the two parabolic
points would now span the annulus from one cylinder to the other, this flow structure
is structurally unstable, according to theorem (3.2) of Ma & Wang (2001), and the
analysis of the Taylor vortices by Benjamin (1978a ,b) and Ma & Wang (2000). To
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Figure 8. Streamline portrait of TC flow and two types of PTV in the (r, ζ ′)-plane for one
axial wavelength, with ζ ′ = z−Udt where Ud is the axial drift velocity of the travelling vortices.
(e) denotes elliptic points, (h) hyperbolic points, and (p) parabolic points. (a) TC flow (zero
mean axial flow, and Ud = 0); (b) PTV(I): PTV with meandering back-flow; (c) PTV(II): PTV
with meandering forward-flow.

obtain a realistic flow structure, Haim & Pismen (1994) used the eigenfunctions for
the PTV mode obtained numerically by Ng & Turner (1982) for various values of
Re and η, and computed the streamline fields for different values of the amplitude
of the eigenfunction. They found two types of PTV flows, the first (denoted PTV(I))
with a meandering flow in the direction opposite to the imposed axial through-flow
for low values of the eigenfunction amplitude, and the second (labelled PTV(II)) with
a meandering flow co-current with the mean flow for large values of the amplitude.
Starting from the streamline plots displayed by Haim & Pismen (1994), we constructed
the streamline portraits of these two candidate PTV modes and they are shown in
figures 8(b) and 8(c). The PTV flow corresponds to translating the portraits along the
positive z-axis with the propagating vortex velocity Ud. An increase in the amplitude
of the eigenfunction, i.e. of the disturbance relative to CP flow, is consistent with an
increase in vortical strength, i.e. an increase of Ta.

Both streamline portraits shown in figures 8(b) and 8(c) satisfy the topological
invariance relation given by (3.1), as both possess NE = 2 elliptic points, NH =2
hyperbolic points, and NP = 0 parabolic points. They also satisfy the conditions for
structural stability determined by Ma & Wang (2001), since the hyperbolic points
are self-connected. The occurrence of the PTV(II) mode is not as likely as that of
the PTV(I) mode because the former requires a larger amplitude of the perturbation
eigenfunction, which would further imply that the counter-rotating vortices travel
more slowly than the mean axial velocity U (since the meandering forward flow
induces a positive flux in the axial direction). Vortices moving slower than the mean
flow have only been observed by Giordano et al. (1998), but their experimental set-up
was similar to that of Bühler & Polifke (1990) in terms of the absence of flow-
straighteners at the entrance of the annular region. Moreover, Giordano et al. (1998)
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used very low axial through-flows with Re < 1.067, which, combined with non-
negligible inlet flow swirl, is likely to lower the propagation speed Ud of the PTV. In
all studies involving the stability analysis of TCP flow (e.g. Takeuchi & Jankowski
1981; Ng & Turner 1982), and most experimental studies of TCP for modest values
of Re ( < 100) (e.g. Snyder 1962; Lueptow et al. 1992; Moser et al. 2000c; Raguin
et al. 2001), the drift velocity of the PTV is larger than U , and in most cases approxi-
mately Ud = 1.2U , which means that the meandering streamlines have negative axial
velocity in the reference frame travelling with the PTV. Wereley & Lueptow (1999) also
reported the presence of meandering streams, as they performed velocity measure-
ments using PIV in their study of the PTV flow. Furthermore, the existence of such
meandering flows was invoked by Raguin et al. (2001) in their analogy to the wave
propagation in a dispersive media to account for the observation that Ud >U in their
dye injection experiments. In conclusion, both theoretical and experimental evidence
suggests that the PTV flow portrait resembles the mode PTV(I) given in figure 8(b).

The SHV flow topology proposed by Bühler & Polifke (1990) can be obtained by
rotating the meridional section in figure 8(a) according to the transformation (2.1),
which again produces a structurally unstable flow topology (Ma & Wang 2000). In
contrast, the SHV flow structure proposed here is topologically close to the prevailing
PTV(I) mode given in figure 8(b), and they share the flow skeleton complexity as mea-
sured by the number and nature of cells and singular points. As the PTV mode is
replaced by the SHV mode, the twin counter-rotating toroidal vortices in PTV(I) give
rise to the two asymmetric helical counter-rotating vortices depicted in figures 4–6.
Intuitively, the rotation of the inner cylinder drives the counter-rotating vortex in (CI)
and consequently makes it larger than the co-rotating vortex in (CII). This asymmetry
is justified if we consider the bulk flow to be Eulerian (inviscid approximation) and
assume that the viscous effects are limited to the regions close to the walls. Conserva-
tion of angular momentum in the bulk flow driven by the inner cylinder requires
that the counter-rotating vortex be larger than the co-rotating vortex. This is an
important consequence of the transition from the axisymmetric flow structure of the
PTV mode to the helical symmetry of the SHV mode. Since the SHV mode has not
been extensively studied, no other experimental observation of this asymmetry in
the vortex sizes is available in the literature, to the authors’ knowledge. However,
the numerical simulations performed by Holdych (2003) and depicted in figure 7
do corroborate our finding of a significant size difference between the two counter-
rotating vortices.

A better way to compare the strength of the counter-rotating vortices in the SHV
mode is to plot the streamfunction ψ(r, ζ ) corresponding to the perturbation velocity
field (vr, vζ ) in (2.19), instead of the complete streamfunction Ψ (r, ζ ). In figure 9(a)
ψ(r, ζ ) is represented for one wavelength, while figure 10 shows ψ in a transverse
section as a function of (r, ϕ), which is consistent with the measured velocity field
shown in figure 2. Clearly, the two vortices are not of the same size and strength as
the counter-rotating vortex in figure 10, i.e. the one shown with the light shades of
grey (positive values of ψ), is about 1.9 times larger than the co-rotating vortex in the
dark shades of grey (negative values of ψ) at r = (R1 +R2)/2. Note that the parabolic
points on the outer cylinder are diagonally symmetric in figure 10, and equidistant
in the meridional plane depicted in figure 9, while the symmetry is broken for the
parabolic points on the inner cylinder. This confirms that the inner cylinder rotation
combined with the helical symmetry is responsible for the creation of asymmetry
between the two counter-rotating vortices when the flow transitions from the PTV
mode to the SHV mode.
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Figure 9. Two-dimensional streamlines of (a) the perturbation to the reference velocity field,
given by (2.23); (b) the perturbation to CP flow, given by the sum of (2.23) and the
streamfunction due to (2.31); and (c) the full SHV velocity field, given by (2.19), in the
(r, ζ )-plane with r and ζ scaled with R2 and λ, respectively. The vortex marked by the dark
shades of grey is the counter-rotating vortex, while the one in the light shades of grey is the
co-rotating vortex following the same nomenclature as used for figure 4. Separating streamlines
connect the inner to the outer cylinder and the reverse, as indicated by arrows.

Figure 10. Two-dimensional streamlines of the perturbation to the CP streamfunction for
SHV flow, given by (2.23), in the (r, ϕ)-plane. The vortex rotation convention is the same as in
figure 9.
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Figures 9(a)–9(c) show the transition in terms of streamfunction fields, from the
perturbative velocity field with zero average (vr, vζ ) in (a), to the velocity field depar-
ture from the CP profile in (b), to the full SHV velocity field in (c). In figure 9(b), there
is no connecting streamline between the inner and outer cylinder, as both vortices are
enclosed in a cell connected to each cylinder. Finally, in figure 9(c), the cell containing
the large counter-rotating vortex is detached from the inner cylinder, while the smaller
cell is still connected to the outer cylinder.

4. Global description of SHV flow
4.1. Integrability of the SHV flow

In this section, we apply the analytical tools developed by Mezic & Wiggins (1994) for
three-dimensional fluid flows with symmetry to prove that the SHV mode is integrable.
Since these tools only require that the velocity field be kinematically admissible, i.e.
that the continuity equation and the boundary conditions are satisfied, they apply
both to the approximated SHV flow field and to the ‘ideal’ SHV flow field, which
additionally satisfies the incompressible Navier–Stokes equations.

The three-dimensional autonomous Lagrangian system (2.10) is a volume-preserving
system of ordinary differential equations, since the velocity field is divergence-free.
Furthermore, the velocity field admits a one-parameter volume-preserving spatial
symmetry group G defined in cylindrical coordinates by the ‘screw’ transformation:

∀x = (r, θ, z) ∈ S ⊂ �3, ∀α ∈ [0, λ], g(x; α) =

(
r, θ − 2π

λ
α, z + α

)
, (4.1)

with the following law of composition φ(α, β):

∀α, β ∈ [0, λ], g(g(x; α); β) = g(x; φ(α, β)), φ(α, β) = α + β. (4.2)

It is straightforward to show that the family of mappings G defined by (4.1) and (4.2)
acting on S forms a one-parameter Lie group with infinitesimal generator given by
the vector field w =(0, −2π/λ, 1). Theorem 2.2 from Mezic & Wiggins (1994) then
guarantees that there exists a local change of variables (r, θ, z) �−→ (ρ, ζ, κ) such that
the system (2.10) becomes

dρ

dt
=

∂H (ρ, ζ )

∂ζ
,

dζ

dt
= −∂H (ρ, ζ )

∂ρ
,

dκ

dt
= k3(ρ, ζ ), (4.3a, b, c)

where H is a first integral, or Hamiltonian, i.e. a quantity that is preserved by the
flow. In the SHV flow, the appropriate change of variables is

ρ =
r2

2
, ζ = z +

λ

2π
θ, κ = z, (4.4a, b, c)

hence k3(ρ, ζ ) = Vz(
√

2ρ, ζ ), and the Hamiltonian of the system is related to the
streamfunction defined in § 2.2, as follows:

H (ρ, ζ ) = Ψ (
√

2ρ, ζ ). (4.5)

We may note in passing that, unlike in the examples cited by Mezic & Wiggins
(1994), the infinitesimal generator that defines the symmetry for the SHV mode is
not identical to the vorticity of the velocity field. The relationships (4.3a–c) indicate
that the problem can be decomposed into two velocity components which form a
canonical one-degree-of-freedom Hamiltonian system (4.3a, b), and a third non-zero
velocity component (4.3c), which depends on the first two variables (ρ, ζ ). This
confirms that the SHV velocity field is integrable.
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4.2. Qualitative study of scalar transport in the SHV mode

The coordinates (ρ, ζ ) are functionally independent invariants of the ‘screw’ trans-
formation G given by equation (4.1). The continuous symmetry (2.1) has been used
to reduce the three-dimensional SHV flow in three-dimensional space to a three-
dimensional flow on the two-manifold (ρ, ζ ), which now constitutes the reduced phase
space. Casting the problem in this form justifies the use of terminology and methodo-
logy of dynamical systems theory (cf. Wiggins 1992). For example, since the infini-
tesimal generator and velocity field are not everywhere collinear, the SHV flow can
be partitioned into a finite number of cells. Each cell is then fibred either into tori,
as evidenced by the presence of (CI) and (CII), or into annula ((PI) and (PII)), as
theorem 4.1 in Mezic & Wiggins (1994) implies. This can be verified by referring to
figures 4–6.

In analogy with flow fields containing similar features (Ottino 1989), it is expected
that the phase portrait of SHV described above goes through certain qualitative
changes when the flow is perturbed. Under small perturbations, say with a pertur-
bation field that itself is Hamiltonian, it is possible for the Hamiltonian system (4.3a, b)
to become non-integrable which is a necessary condition for chaotic behaviour. In
fact, flows involving interacting coaxial vortex rings have been shown to be non-
integrable (cf. Bagrets & Bagrets 1997). The third component of the equation system
(4.3c) may additionally be perturbed, which gives the SHV mode an extra degree
of freedom to study potential chaotic behaviour in three dimensions (cf. Raguin
2004).

Since the postulated perturbation field is Hamiltonian, the KAM theorem applies,
and therefore most of the invariant irrational helical vortices in (CI) and (CII) shown
in figure 6 are conserved in the perturbed SHV flow. These helical KAM tubes
are invariant surfaces and therefore correspond to zero geometric flux (according to
the terminology from MacKay 1994), or equivalently, to a mixing barrier between
the vortices (CI) and (CII). Between these KAM surfaces, one expects the potential
establishment of chaotic orbits when the SHV is perturbed. For example, the unstable
manifold through (p1) would not coincide with the stable manifold through (p2).
The consequence of the formation of this heteroclinic tangle (Wiggins 1992) would
be the enhancing of mixing, or interchange of a passive scalar, between the vortices
(CI) and (CII) of the unperturbed SHV flow. This geometric argument supports the
prediction that mixing across the counter-rotating cells is minimal for the SHV mode
relative to certain perturbed modes. We are not pursuing the quantification of passive
scalar transport here; instead we conclude our investigation of the global properties
of perturbed SHV states by focusing on viscous dissipation.

4.3. Viscous dissipation in the SHV mode

We start by adding a velocity perturbation u = (ur, uθ , uz) to a reference flow field
V =(Vr, Vθ , Vz) defined in an annular geometry occupied by an incompressible fluid.
The flow is driven by a mean axial pressure gradient denoted by P . All quantities are
rendered dimensionless by scaling lengths with d = R2 − R1, velocities with ν/d , time
with d2/ν, and the pressure gradient with ν2/d3. Following Joseph (1976) and in the
spirit of (2.36), we define the average of a quantity f over a cylinder of radius r and
infinite length, denoted with an overbar, as follows:

f (r, t) ≡ lim
L→∞

[
1

2L

∫ L

−L

1

2π

∫ 2π

0

f (r, θ, z, t) dθ dz

]
, (4.6)
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while the spatial average over the whole annulus of a physical quantity f is denoted
with brackets, as follows:

〈f 〉 ≡ 〈f 〉 ≡ 2

R2
2 − R2

1

∫ R2

R1

f (r, t)r dr. (4.7)

This study is limited to a perturbative velocity field with zero cylindrical average,
i.e. u = 0, driven by a constant P . The continuity equation combined with the
boundary conditions for the annular geometry gives 〈Vr〉 = 0. Then, starting from
the incompressible Navier–Stokes equations, the spatial average of the total kinetic
energy equation over an annulus with an inner cylinder rotating with angular velocity
Ω is given by

1

2

d

dt
〈|Vθ |2 + |Vz|2 + |u|2〉 = 2Re P + 1

2
Ta T −

〈
|∇u|2 +

∣∣∣∣∂Vθ

∂r

∣∣∣∣
2

+

∣∣∣∣∂Vz

∂r

∣∣∣∣
2

+
Vθ

2

r2

〉
, (4.8)

where T is the dimensionless torque imposed on the fluid by the rotating inner
cylinder defined by

T = − 1

Ω

∂Vθ

∂r
(R1). (4.9)

Equation (4.8) is a modification of the expression derived by Joseph (1976) for annular
Poiseuille flow with the addition of a shaft work term (second term of the right-hand
side). It merely expresses the fact that the total kinetic energy production is balanced
by the work of the axial pressure gradient and the work of the torque of the inner
cylinder from which the total viscous dissipation must be subtracted.

Let us consider a perturbation u to a steady reference velocity field V (e.g. CP or
SHV), so that the first two terms of the left-hand side of (4.8) are zero. Equivalently,
the Hamiltonian H , or correspondingly the streamfunction Ψ , can be perturbed,
leading to the functional form for u. Since the Hamiltonian only fixes the two-
dimensional velocity field (ur, uζ ) as seen in (4.3a, b), the third component of the
Hamiltonian system (4.3c) can be independently perturbed, as long as this additional
perturbation satisfies uz =0. Such disturbances are encountered experimentally as
convective instabilities when the reference stationary velocity field is CP flow, as well
as when the reference field is the SHV mode, as Moser et al. (2001b) reported when
investigating the breakup of the SHV mode as the axial Reynolds number is increased.
Indeed, the cinematographic image sequences obtained via MRI revealed convective
instabilities propagating along the helical vortices. For this type of disturbance, the
average kinetic energy equation (4.8) reduces to

1

2

d

dt
〈|u|2〉 + 〈|∇u|2〉 +

〈∣∣∣∣∂Vθ

∂r

∣∣∣∣
2

+

∣∣∣∣∂Vz

∂r

∣∣∣∣
2

+
Vθ

2

r2

〉
= 2ReP + 1

2
Ta T , (4.10)

which states that the mechanical energy input (right-hand side) balances the sum of
the change in mean kinetic energy, the mean viscous dissipation of the fluctuation field
and the mean viscous dissipation of the reference field (left-hand side).

The energy balance equation (4.10) can be further simplified if the fluctuation field
has stationary kinetic energy. Taking the temporal average of (4.10) eliminates the
fluctuation kinetic energy term (first term on the left-hand side). Consequently, the
averaged-over-time equation (4.10) applied to a reference flow field identified with
SHV implies that the SHV mode is associated with a minimum in viscous dissipation.
Any SHV fluctuation will result in the addition of a positive definite viscous dissipation
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term (second term on the left-hand side) and in the corresponding increase of the
mechanical energy input required to sustain the flow. The optimality of the SHV mode
in terms of minimal mechanical energy input is of course contingent upon introducing
perturbations with zero cylindrical averages and stationary average kinetic energy.
We note in closing that the asymptotic behaviour of the dissipation norm of equation
(2.35) shown in figure 3 is consistent with the existence of the minimum viscous
dissipation implied by (4.10).

5. Conclusions
Our central goal was to reconstruct the stationary helical vortex (SHV) mode, a

complex duct flow field observed in the Taylor–Couette–Poiseuille system, starting
from relatively coarse velocity measurements with non-uniform resolution on a finite
number of cross-sections, and to study its kinematics. The velocity measurements were
obtained with 10% error by tracking a grid of transient material lines tagged in water
with magnetic resonance imaging (MRI). Exploiting the helical symmetry of the SHV
mode to its fullest, we achieved our goal by constructing a complete set of orthogonal
basis functions in the two-dimensional reduced coordinate system (r, ζ ) that are
kinematically admissible (incompressible flow, no-slip boundary conditions). The
velocity field for the SHV mode was decomposed into a reference flow field profile that
accounts for the average properties of the velocity field and an additional velocity field
v. The complete set of basis functions was used to find an analytical approximation
for the streamfunction corresponding to v in terms of a series expansion. The series
converged in L2, and it was truncated according to the convergence of a discrete
least-squares error with respect to the point-wise MRI velocity measurements and
a volume-averaged viscous dissipation function. Methodologically, our goal was
achieved because the SHV mode possesses a continuous volume-preserving symmetry,
and we managed to project the approximation onto the space of divergence-free
functions that satisfy the appropriate boundary conditions. This work serves to demon-
strate the potential of supplementing MRI measurements with appropriate a priori
fluid mechanical constraints, an idea which has profound implications for reducing
the acquisition time for complex cellular flows (cf. Raguin & Georgiadis 2004a). The
reconstruction of the SHV mode presented here is independent of fluid dynamics
constraints, and therefore can be applied to experimental data obtained from the full-
field optical imaging of other deformable media acquired in a way that reveals global
field symmetries (cf. Achilleos et al. 2000). Finally, our method can be employed in the
reconstruction of flow fields by combining sparse data acquisition and computational
fluid dynamics (Raguin et al. 2004).

The analytically reconstructed streamfunction for the SHV mode allows a metho-
dical study of its kinematics. This permits the delineation of the three-dimensional
flow skeleton, which consists of a pair of asymmetric helical counter-rotating vortices
wrapped around the inner cylinder in the direction of the inner boundary rotation and
separated by two counter-current annular flow streams (figure 6). The flow topology
proposed in this study is consistent with general topological constraints, which exclude
a number of other flow topologies, and is further corroborated by other independent
experimental and numerical findings (cf. figure 7). The complete kinematic description
in this study is a significant improvement over previous observations, which over-
simplified the SHV mode by postulating that the flow is constituted by two identical
counter-rotating vortices helically wound around the inner cylinder. First, it is shown
that the SHV flow skeleton proposed here is structurally stable, unlike earlier simplistic
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models. Second, the asymmetry of the two counter-rotating vortices is pointed out
(and explained) for the first time. A transverse section of the flow such as in figures 4
and 10 reveals the shape taken by the two counter-rotating vortices (unlike in
axisymmetric flows where only meridional sections intersect the vortices), and clearly
demonstrates that the asymmetry in vortex size and strength is driven by the inner
cylinder rotation.

Besides the aesthetic appeal of the SHV mode rendered in figure 6, the analytical
reconstruction of a three-dimensional volume-preserving duct flow field has important
consequences for the study of three-dimensional dynamic systems in the strongly
nonlinear regime. The SHV mode constitutes a steady three-dimensional flow with
zero inter-vortex mixing and minimum viscous dissipation relative to a class of oscilla-
tory or propagating perturbed states having zero cylindrical average velocity (uz = 0).
Introducing a second dilute phase into the SHV flow therefore suggests a candidate
canonical problem for the study of dispersed-phase segregation in open chaotic flows,
a topic which has received little attention relative to mixing and has recently been
studied by Raguin (2004). Finally, we have shown rigorously that the phase portrait
of the SHV mode corresponds to an integrable Hamiltonian system characterized by
a plethora of critical features which would usher in rich chaotic phenomena when
perturbed. This expectation is supported by experience with similar, albeit lower-
dimension, dynamic systems or prototypical flows. The Hamiltonian perspective can
indeed simplify the study of the global properties of these systems (cf. Salmon 1988).
The study of the Lagrangian properties of these three-dimensional perturbed flows has
to be postponed until appropriate dynamic constraints can be taken into considera-
tion. Even for a single set of (Re, Ta) parameters, obtaining a high-resolution descrip-
tion for the SHV mode which obeys strict mass conservation is a requisite starting
point for anyone pursuing such studies (cf. Raguin 2004; Raguin & Georgiadis 2004b).
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in MRI velocimetry. This project has been supported by DARPA (under contract
DABT 63-98-C-0053) and by the NSF–Science & Technology CAMPWS (cooperative
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